Developmental Biology


日本語

Kumano lab. Developmental Biology
  Asamushi Research Center for Marine Biology, Graduate School of Life Science, Tohoku University

Top > Publications


ORIGINAL ARTICLES:

Fujita S, Takahashi M, Kumano G, Kuranaga E, Miura M, Nakajima Y. (2023). Distinct sstem-like cell populations facilitate functional regeneration of the Cladonema medusa tentacle. PLoS Biol 21, e3002435.

Hou S, Zhu J, Shibata S, Nakamoto A, Kumano G. (2021). Repetitive accumulation of interstitial cells generates the branched structure of Cladonema medusa tentacles. Development 148, dev199544.

Shih Y, Wang K, Kumano G, Nishida H. (2020). Expression and function analyses of ectodermal transcription factors FoxJ-r, SoxF, and SP8/9 in early embryos of the ascidian Halocynthia roretzi. Zool Sci 38, 26-35.

Nakamoto A, Kumano G. (2020). Dynein-mediated regional cell division reorientation shapes a tailbud embryo. iScience 23: 100964.

Zheng T, Nakamoto A, Kumano G. (2020). H3K27me3 suppresses sister-lineage somatic gene expression in late embryonic germline cells of the ascidian, Halocynthia roretzi. Dev Biol 460: 200-214.

Fujiki A, Shiting H, Nakamoto A, Kumano G. (2019). Branching pattern and morphogenesis of medusa tentacles in the jellyfish Cladonema pacificum (Hydrozoa, Cnidaria). Zoological Letters 5:12.

Miyaoku K, Nakamoto A, Nishida H, Kumano G. (2018). Control of Pem protein level by localized maternal factors for transcriptional regulation in the germline of the ascidian, Halocynthia roretzi. PLoS One 13: e0196500.


Kodama H, Miyata Y, Kuwajima M, Izuchi R, Kobayashi A, Gyoja F, Onuma TA, Kumano G, Nishida H. (2016). Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians. Dev Biol 416: 162-172.


Kumano, G., Negoro, N. and Nishida, H. (2014). Transcription factor Tbx6 plays a central role in fate determination between mesenchyme and muscle in embryos of the ascidian, Halocynthia roretzi. Dev. Growth Differ. 56, 310-322..


Kuwajima, M., Kumano, G. and Nishida, H. (2014). Regulation of the number of cell division rounds by tissue-specific transcription factors and Cdk inhibitor during ascidian embryogenesis. PLOS ONE 9, e90188.

Nishide, K., Mugitani, M., Kumano, G. and Nishida, H. (2012). Neurula rotation determines left-right asymmetry in ascidian tadpole larvae. Development 139, 1467-1475.

Kumano, G., Takatori, N., Negishi, T., Takada, T. and Nishida, H. (2011). A maternal factor unique to ascidians silences the germline via binding to P-TEFb and RNAP II regulation. Curr. Biol. 21, 1308-1313.

Hashimoto, H., Enomoto, T., Kumano, G. and Nishida, H. (2011). The transcription factor FoxB mediates temporal loss of cellular competence for notochord induction in ascidian embryos. Development 138, 2591-2600.

Negishi, T., Kumano, G. and Nishida, H. (2010). Polo-like kinase 1 is required for localization of PEM protein to the centrosome-attracting body and unequal cleavages in ascidian embryos. Dev. Growth Differ. 53, 76-87.

Takatori, N., Kumano, G., Saiga, H. and Nishida, H. (2010). Segregation of germ layer fates by nuclear migration-dependent localization of Not mRNA. Dev. Cell 19, 589-598.

Kumano, G., Kawai, N. and Nishida, H. (2010). Macho-1 regulates unequal cell divisions independently of its function as a muscle determinant. Dev. Biol. 344, 284-292.

Kobayashi, M., Takatori, N., Nakajima, Y., Kumano, G., Nishida, H. and Saiga, H. (2010). Spatial and temporal expression of two transcriptional isoforms of Lhx3, a LIM class homeobox gene, during embryogenesis of two phylogenetically remote ascidians, Halocynthia roretzi and Ciona intestinalis. Gene Expr. Patterns 10, 98-104.

Niwano, T., Taktori, N., Kumano, G. and Nishida, H. (2009). Wnt5 is required for notochord cell intercalation in the ascidian Halocynthia roretzi. Biol. Cell 101, 645-659.

Kumano, G. and Nishida, H. (2009). Patterning of an ascidian embryo along the anterior-posterior axis through spatial regulation of competence and induction ability by maternally localized PEM. Dev. Biol. 331, 78-88.

Tokuoka, M., Kumano, G. and Nishida, H. (2007). FGF9/16/20 and Wnt-5 alpha signals are involved in specification of secondary muscle fate in embryos of the ascidian, Halocynthia roretzi. Dev. Genes Evol. 217, 515-527.

Kawai, N., Iida, Y., Kumano, G. and Nishida, H. (2007). Nuclear accumulation of beta-catenin and transcription of downstream genes are regulated by zygotic Wnt5 alpha and maternal Dsh in ascidian embryos. Dev. Dyn. 236, 1570-1582.

Matsumoto, J., Kumano, G. and Nishida, H. (2007). Direct activation by Ets and Zic is required for initial expression of the Brachyury gene in the ascidian notochord. Dev. Biol. 306, 870-882.

Kim, G. J., Kumano, G. and Nishida, H. (2007). Cell fate polarization in ascidian mesenchyme/muscle precursors by directed FGF signaling and role for an additional ectodermal FGF antagonizing signal in notochord/nerve cord precursors. Development 134, 1509-1518.

Miyazaki, Y., Nishida, H. and Kumano, G. (2007). Brain induction in ascidian embryos is dependent on juxtaposition of FGF9/16/20-producing and -receiving cells. Dev. Genes Evol. 217, 177-188.

Kumano, G., Yamaguchi, S. and Nishida, H. (2006). Overlapping expression of FoxA and Zic confers responsiveness to FGF signaling to specify notochord in ascidian embryos. Dev. Biol. 300, 770-784.

Kumano, G., Ezal, C. and Smith, W. C. (2006). ADMP2 is essential for primitive blood and heart development in Xenopus. Dev. Biol. 299, 411-423.

Kumano, G. and Smith, W. C. (2002). The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus. Mech. Dev. 118, 45-56.

Kumano, G., Ezal, C. and Smith, W. C. (2001). Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm. Dev. Biol. 236, 465-477.

Kumano, G. and Smith, W. C. (2000). FGF signaling restricts the primary blood islands to ventral mesoderm. Dev. Biol. 228, 304-314.

Kumano, G., Belluzzi, L. and Smith, W. C. (1999). Spatial and temporal properties of ventral blood island induction in Xenopus laevis. Development 126, 5327-5337.

Kumano, G. and Nishida, H. (1998). Maternal and zygotic expression of the endoderm-specific alkaline phosphatase gene in embryos of the ascidian, Halocynthia roretzi. Dev. Biol. 198, 245-252.

Nishida, H. and Kumano, G. (1997). Analysis of the temporal expression of endoderm-specific alkaline phosphatase during development of the ascidian Halocynthia roretzi. Dev. Growth Differ. 39, 199-205.

Kumano, G., Yokosawa, H. and Nishida, H. (1996). Biochemical evidence for membrane-bound endoderm-specific alkaline phosphatase in larvae of the ascidian, Halocynthia roretzi. Eur. J. Biochem. 240, 485-489.


REVIEW ARTICLES:

Kumano, G. (2015). Evolution of germline segregation processes in animal development. Dev. Growth and Differ. 54, 324-332.

Kumano, G. (2012). Polarizing animal cells via mRNA localization in oogenesis and early development. Dev. Growth and Differ. 54, 1-18.

Kumano, G. and Nishida, H. (2007). Ascidian embryonic development: an emerging model system for the study of cell fate specification in chordates. Dev. Dyn. 236, 1732-1747. Selected in “Highlights in DD (Vol. 236, issue 11, 2007)”.


Kumano, G. and Smith, W. C. (2002). Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev. Dyn. 225, 409-421.


BOOKS:

Kumano, G. (2018). Early embryonic axis formation in a simple chordate ascidian. In Kobayashi, K., Kitano, T., Iwao, Y. and Kondo, M. (ed) Reporduction and Developmental Strategies. Springer, Heidelberg. pp593-614.

Kumano, G. (2018). Microinjection of exogenous DNA into eggs of Halocynthia roretzi. Adv Exp Med Biol 1029: 25-35

Kumano, G. (2014). Taxon-specific maternal factors for germline specification. In Kondoh, H. and Kuroiwa, A. (ed) New Principles in Developmental Processes. Springer, Heidelberg. pp 3-11.