福田研の研究成果
2025
1) Haga, K. and Fukuda, M.
Comprehensive knockout analysis of the RAB family small GTPases reveals an overlapping role of RAB2 and RAB14 in autophagosome maturation.
Autophagy 21, 21–36 (2025)
[PubMed]
2) Hata, R., Sugawara, A. and Fukuda, M.
Rab10 function in tubular endosome formation requires the N-terminal K3 residue and is disrupted by N-terminal tagging.
J. Cell Sci. 138, jcs.263649 (2025)
[PubMed]
3) 菅原翠、福田光則
“メラノソームの色素細胞内輸送と表皮内移送”
Cosmetic Science「美白・しみ予防研究のトレンド」 4 60-67 (2025)
[リンク]
4) Nakashima S. and Fukuda M.
Identification of Rab GTPase-activating proteins required for tubular endosome formation.
Traffic 26 e70007 (2025)
[PubMed]
5) Sugawara A. Maruta Y. and Fukuda M.
AID-2×RBD27 an auxin-inducible degron-based Rab27 trapper that reversibly inhibits the function of Rab27A in melanocytes.
J. Cell Sci. 138, jcs.263878 (2025)
[PubMed]
2024
1) Nakamura, H. and Fukuda, M.
Establishment of a synchronized tyrosinase transport system revealed a role of Tyrp1 in efficient melanogenesis by promoting tyrosinase targeting to melanosomes.
Sci. Rep. 14,2529 (2024)
[PubMed]
2) Komori, T. and Fukuda, M.
Two roads diverged in a cell: insights from differential exosome regulation in polarized cells.
Front. Cell Dev. Biol. 12, 1451988
[PubMed]
2023
1) Maruta, Y. and Fukuda, M.
Lysosome-related organelles.
Encyclopedia of Cell Biology 2nd edition
volume 2, pp. 281-290, Elsevier, Amsterdam, Netherlands (2023)
[リンク]
2) 中村光李、福田光則:“メラノソームの生合成”:,
Derma「色素異常症診療のポイント」(鈴木民夫編)」,
330, 9-18 (2023)
[リンク]
3) Nakashima, S., Matsui, T. and Fukuda, M.
Vps9d1 regulates tubular endosome formation through specific activation of Rab22A.
J. Cell Sci. 136, jcs260522 (2023)
[PubMed]
4) Brauer, N., Maruta, Y., Strege, K., Oschlies, I., Nakamura, H., Lisci, M., Böhm, S., Lehmberg, K., Brandhoff, L., Hennies, H. C., Ehl, S. R. Parvaneh, N., Kappler, W., Fukuda, M., Griffiths, G. M., Niehues, T. and Ammann, S. K.
Immunodeficiency with susceptibility to lymphoma with complex genotype affecting energy metabolism (FBP1, ACAD9) and vesicle trafficking (RAB27A).
Front. Immunol. 14, 1151166 (2023)
[PubMed]
5) Komori, T., Kuwahara, T., Fujimoto, T., Sakurai, M., Koyama-Honda, I., Fukuda, M. and Iwatsubo, T.
Novel phosphorylation of Rab29 that regulates its localization and lysosomal stress response in concert with LRRK2.
J. Cell Sci. 136, jcs.261003 (2023)
[PubMed]
6) Matsui T. Sakamaki Y. Hiragi S. and Fukuda M.
VAMP5 and distinct sets of cognate Q-SNAREs mediate exosome release.
Cell Struct. Funct.48, 187–198 (2023)
[PubMed]
7) Rios, J. J., Li, Y., Paria, N., Bohlender, R. J., Huff, C., Rosenfeld, J. A., Liu, P., Bi, W., Haga, K., Fukuda, M., Vashisth, S., Kaur, K., Chahrour, M., Bober, M. B., Duker, A. L., Ladha, F. A., Hanchard, N. A., Atala, K., Khanshour, A. M., Smith, L., Wise, C. A. and Delgado, M. R.
RAB1A haploinsufficiency phenocopies the 2p14-p15 microdeletion and is associated with impaired neuronal differentiation.
Am. J. Hum. Genet. 110, 2103-2111 (2023)
[PubMed]
2022
1) Oguchi, M. E., Homma, Y. and Fukuda, M.
The N-terminal Leu-Pro-Gln sequence of Rab34 is required for ciliogenesis in hTERT-RPE1 cells.
Small GTPases 16, 1-7 (2022)
[PubMed]
2) Matsui, T., Sakamaki, Y., Nakashima, S. and Fukuda, M.
Rab39 and its effector UACA regulate basolateral exosome release from polarized epithelial cells.
Cell Rep. 39, 110875 (2022)
[PubMed]
3) Naß, J., Koerdt, S. N., Biesemann, A., Chehab, T., Yasuda, T., Fukuda, M., Martín-Belmonte, F. and Gerke, V.
Tip-end fusion of a rod-shaped secretory organelle.
Cell. Mol. Life Sci. 79, 344 (2022)
[PubMed]
4) Hiragi, S., Matsui, T., Sakamaki, Y. and Fukuda, M.
TBC1D18 is a Rab5-GAP that coordinates endosome maturation together with Mon1.
J. Cell Biol. 221, e202201114 (2022)
[PubMed]
5) Maruta, Y. and Fukuda, M.
Large Rab GTPase Rab44 regulates microtubule-dependent retrograde melanosome transport in melanocytes.
J. Biol. Chem. 298, 102508 (2022)
[PubMed]
6) Nishizawa, A., Maruta, Y. and Fukuda, M.
Rab32/38-dependent and -independent transport of tyrosinase to melanosomes in B16-F1 melanoma cells.
Int. J. Mol. Sci. 23, 14144 (2022)
[PubMed]
7) 丸田優人、吉川智香子、水谷友紀、福田光則:“ヒト皮膚組織内のメラニン色素の可視化”:,
Cosmetic Stage,
17(1), 7-11 (2022)
[リンク]
2021
1) Homma, Y. Hiragi, S. and Fukuda, M.
Rab family of small GTPases: an updated view on their regulation and functions.
FEBS J. 288, 36-55 (2021)
[PubMed]
2) Fukuda, M.
Rab GTPases: key players in melanosome biogenesis, transport, and transfer.
Pigment Cell Melanoma Res. 34, 222-235 (2021)
[PubMed]
3) Urrutia, P. J., Bodaleo, F., Bórquez, D. A., Homma, Y., Rozes-Salvador, V., Villablanca, C., Conde, C., Fukuda, M. and González-Billault, C.
Tuba activates Cdc42 during neuronal polarization downstream of the small GTPase Rab8a.
J. Neurosci. 41, 1636-1649 (2021)
[PubMed]
4) Osaki, F., Matsui, T., Hiragi, S., Homma, Y. and Fukuda, M.
RBD11, a bioengineered Rab11-binding module for visualizing and analyzing endogenous Rab11.
J. Cell Sci. 134, jcs.257311 (2021)
[PubMed]
5) Matsui, T., Osaki, F., Hiragi, S., Sakamaki, Y. and Fukuda, M.
ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells.
EMBO Rep. 22, e51475 (2021)
[PubMed]
6) Homma, Y. and Fukuda, M.
Knockout analysis of Rab6 effector proteins revealed the role of VPS52 in the secretory pathway.
Biochem. Biphys. Res. Common. 561, 151-157 (2021)
[PubMed]
7) Omar, J., Rosenbaum, E., Efergan, A., Abu Sneineh, B., Yeheskel, A., Maruta, Y. Fukuda, M. and Sagi-Eisenberg, R.
Biochemical and structural insights into Rab12 interactions with RILP and its family members.
Sci. Rep. 11, 10317 (2021)
[PubMed]
8) Ganga, A. K., Kennedy, M. C., Oguchi, M. E., Gray, S. D., Oliver, K. E., Knight, T. A., De La Cruz, E. M., Homma, Y., Fukuda, M. and Breslow, D. K.
Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway.
Curr. Biol. 31, 2895-2905 (2021)
[PubMed]
9) Kinoshita, R., Homma, Y. and Fukuda, M.
Methods for establishing Rab knockout MDCK cells.
Methods Mol. Biol. 2293, 243-256 (2021)
[PubMed]
10) Trofimenko, E., Homma, Y., Fukuda M. and Widmann, C.
The endocytic pathway taken by cationic substances requires Rab14 but not Rab5 and Rab7.
Cell Rep. 37, 109945 (2021)
[PubMed]
11) Hiragi, S., Matsui, T., Sakamaki, Y. and Fukuda, M.
TBC1D18, a novel Rab5-GAP, coordinates endosome maturation together with Mon1.
BioRxiv 468194v1 (2021)
[リンク]
12) Hatoyama, Y., Homma, Y., Hiragi, S. and Fukuda, M.
Establishment and analysis of conditional Rab1 and Rab5 knockout cells by using the auxin-inducible degron system.
J. Cell Sci. 134, jcs.259184 (2021)
[PubMed]
2020
1) Kinoshita, R., Homma, Y. and Fukuda, M.
Rab35–GEFs, DENND1A and folliculin differentially regulate podocalyxin trafficking in two- and three-dimensional epithelial cell cultures.
J. Biol. Chem. 295, 3652-3663 (2020)
[PubMed]
2) 松井貴英、福田光則:“エクソソームの生合成機構”,
医学のあゆみ「エクソソームと疾患医学」,
272(4), 293-298 (2020)
[リンク]
3) Marubashi,S. and Fukuda, M.
Rab7B/42 is functionally involved in protein degradation on melanosomes in keratinocytes.
Cell Struct. Funct. 45, 45-55 (2020)
[PubMed]
4) Ohbayashi, N. and Fukuda, M.
Recent advances in understanding the molecular basis of melanogenesis in melanocytes.
F1000 Res. 9, 608 (2020)
[PubMed]
5) 本間悠太、福田光則:“ノックアウト解析により加速する低分子量Gタンパク質Rabの生理機能の解明”,
生化学,
92(3), 447-452 (2020)
[リンク]
6) Oguchi, M. E., Okuyama, K., Homma, Y. and Fukuda, M.
A comprehensive analysis of Rab GTPases reveals a role for Rab34 in serum-starvation-induced primary ciliogenesis.
J. Biol. Chem. 295, 12674-12685 (2020)
[PubMed]
7) Murakawa, T., Kiger, A. A., Sakamaki, Y., Fukuda, M. and Fujita, N.
An autophagy-dependent tubular lysosomal network synchronizes degradative activity required for muscle remodeling.
J. Cell Sci. 133, jcs248336 (2020)
[PubMed]
8) Ohishi, Y., Ammann, S. K., Ziaee, V., Strege, K., Groß, M., Amos, C. V., Shahrooei, M., Ashournia, P., Razaghian, An., Griffiths, G. M., Ehl, S. R., Fukuda, M. and Parvaneh, N.
Griscelli syndrome type 2 sine albinism: unraveling differential RAB27A effector engagement.
Front. Immunol. 11,612977 (2020)
[PubMed]
9) Yoshikawa-Murakami, C., Mizutani, Y., Ryu, A., Naru, E., Teramura, T., Homma, Y. and Fukuda, M.
A novel method for visualizing melanosome and melanin distribution in human skin tissues.
Int. J. Mol. Sci. 21, E8514 (2020)
[PubMed]
2019
1) Etoh, K. and Fukuda, M.
Rab10 regulates tubular endosome formation through KIF13A/B motors.
J. Cell Sci. 132, jcs226977 (2019)
[PubMed]
2) Ohishi, Y., Kinoshita, R., Marubashi, S., Ishida, M. and Fukuda, M.
The BLOC-3 subunit HPS4 is required for activation of Rab32/38 GTPases in melanogenesis, but its Rab9 activity is dispensable for melanogenesis.
J. Biol. Chem. 294, 6912-6922 (2019)
[PubMed]
3) Homma, Y., Kinoshita, R., Kuchitsu, Y., Wawro, P. S., Marubashi, S., Oguchi, M. E., Ishida, M., Fujita, N. and Fukuda, M.
Comprehensive knockout analysis of the Rab family GTPases in epithelial cells.
J. Cell. Biol. 218, 2035-2050 (2019)
[PubMed]
2018
1) Oguchi, M. E., Etoh, K. and Fukuda, M.
Rab20, a novel Rab small GTPase that negatively regulates neurite outgrowth of PC12 cells.
Neurosci. Lett. 662, 324-330 (2018)
[PubMed]
2) Oguchi, M. E. and Fukuda, M.
Rab27 Encyclopedia of Signaling Molecules 2nd Edition (Choi, S. ed.) pp. 4378-4385, Springer, Berlin Heidelberg, Germany (2018)
[リンク]
3) Kuchitsu, Y., Homma, Y., Fujita, N. and Fukuda, M.
Rab7 knockout unveiled regulated autolysosome maturation induced by glutamine starvation.
J. Cell Sci. 131, jcs215442 (2018)
[PubMed]
4) Ohbayashi, N. and Fukuda, M.
SNARE dynamics during melanosome maturation.
Biochem. Soc. Trans. 46, 911-917 (2018)
[PubMed]
5) 大林典彦、福田光則:“メラノサイトにおけるメラノソーム輸送”, 最新・化粧品開発のための美容理論、処方/製剤、機能評価の実際,(技術教育出版社)第8章, 71-81 (2018)
6) Kuchitsu, Y. and Fukuda, M.
Revisiting Rab7 functions in mammalian autophagy: Rab7 knockout studies
Cells, 7, 215 (2018)
[PubMed]
2017
1) Itoh, T. and Fukuda, M.
Roles of Rab-GAPs in regulating autophagy.
Autophagy: Cancer, other pathologies, inflammation, immunity, infection, and aging 11, 143-157 (2017)
[Link]
2) Fujita, N., Huang, W., Lin, T.-H., Groulx, J.-F., Jean, S., Kuchitsu, Y., Koyama-Honda, I., Mizushima, N., Fukuda, M. and Kiger, A. A.
Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy.
eLife, 6, e23367 (2017)
[PubMed]
3) Ishida, M., Marubashi, S. and Fukuda, M.
M-INK, a novel tool for visualizing melanosomes and melanocores.
J. Biochem. 161, 323-326 (2017)
[PubMed]
4) Oguchi, M. E., Noguchi, K. and Fukuda, M.
TBC1D12 is a novel Rab11-binding protein that modulates neurite outgrowth of PC12 cells.
PLoS One, 12, e0174883 (2017)
[PubMed]
5) 本間悠太、福田光則:“Rab ファミリー低分子量 G タンパク質による上皮極性輸送のメカニズム”, 生化学, 89(2), 255-258 (2017) [リンク]
6) 石田森衛、大石雄太、福田光則:“メラニン色素を認識する新規ツール“M-INK“の開発”, フレグランスジャーナル (FRAGRANCE JOURNAL), 45(9), 21-26 (2017)
7) 朽津芳彦、藤田尚信、福田光則:“Rabによるオートファジー制御”, 実験医学増刊号「The オートファジー」, 35(15), 58-65 (2017)
8) 大石雄太、福田光則:“メラニン色素の輸送レベルでの制御と美白剤開発”, Cosmetic Stage, 12(1), 7-14 (2017)
2016
1) Hirano, S., Uemura, T., Annoh, H., Fujita, N., Waguri, S., Itoh, T. and Fukuda, M.
Differing susceptibility to autophagic degradation activity of two LC3-binding proteins: SQSTM1/p62 and TBC1D25/OATL1.
Autophagy 12, 312-326 (2016)
[PubMed]
2) Marubashi, S., Shimada, H., Fukuda, M. and Ohbayashi, N.
RUTBC1 functions as a GTPase-activating protein for Rab32/38 and regulates melanogenic enzyme trafficking in melanocytes.
J. Biol. Chem. 291, 1427-1440 (2016)
[PubMed]
3) Mrozowska, P. S. and Fukuda, M.
Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures.
J. Cell Biol. 213, 355-369 (2016)
[PubMed]
4) Marubashi, S., Ohbayashi, N. and Fukuda, M.
A Varp-binding protein, RACK1, regulates dendrite outgrowth through stabilization of Varp protein in mouse melanocytes.
J. Invest. Dermatol. 136, 1672-1680 (2016)
[PubMed]
5) Fukuda, M.
Multiple roles of VARP in endosomal trafficking: Rabs, retromer components, and R-SNARE VAMP7 meet on VARP.
Traffic, 17, 709-719 (2016)
[PubMed]
6) Homma, Y. and Fukuda, M.
Rabin8 regulates neurite outgrowth in both a GEF-activity-dependent and -independent manner.
Mol. Biol. Cell. 27, 2107-2118 (2016)
[PubMed]
7) Ishida, M., Oguchi, M. E., and Fukuda, M.
Multiple types of guanine nucleotide exchange factors (GEFs) for Rab small GTPases.
Cell Struct. Funct. 41, 61-79 (2016)
[PubMed]
8) 本間悠太、福田光則:“Rabファミリーによるメンブレントラフィック制御”, Dojin Bioscience Series 24 「メンブレンラフィック」(福田光則、吉森保編), 120-132 (2016) [リンク]
9) Mrozowska, P. S. and Fukuda, M.
Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells.
Small GTPases 7, 231-238 (2016)
[PubMed]
2015
1) Yatsu, A., Shimada, H., Ohbayashi, N. and Fukuda, M.
Rab40C is a novel Varp-binding protein that promotes proteasomal degradation of Varp in melanocytes.
Biol. Open, 4, 267-275 (2015)
[PubMed]
2) Ishida, M., Ohbayashi, N. and Fukuda, M.
Rab1A regulates anterograde melanosome transport by recruiting kinesin-1 to melanosomes through interaction with SKIP.
Sci. Rep. 5, 8238 (2015)
[PubMed]
3) Etoh, K. and Fukuda, M.
Structure-function analyses of the small GTPase Rab35 and its efffector protein centaurin-β2/ACAP2 during neurite outgrowth of PC12 cells.
J. Biol. Chem. 290, 9064-9074 (2015)
[PubMed]
4) Yasuda, T., Homma, Y. and Fukuda, M.
Slp2-a inactivates ezrin by recruiting protein phosphatase 1 to the plasma membrane.
Biochem. Biophys. Res. Commun. 460, 896-902 (2015)
[PubMed]
5) Aizawa, M. and Fukuda, M.
Small GTPase Rab2B and its specific binding protein Golgi-associated Rab2B interactor-like 4 (GARI-L4) regulate Golgi morphology.
J. Biol. Chem. 290, 22250-22261 (2015)
[PubMed]
6) 石田森衛、大林典彦、福田光則:“メラノソーム形成とケラチノサイトへの輸送”, 色素細胞第2版,(慶応義塾大学出版会), 第5章, 48(1), 44-58 (2015)
7) 衛藤貫、福田光則:“エンドソーム”, 生体の科学, 66(5), 486-487 (2015)
2014
1) Yasuda, T. and Fukuda, M.
Slp2-a controls renal epithelial cell size through regulation of Rap–ezrin signaling independently of Rab27.
J. Cell Sci. 127, 557-570 (2014)
[PubMed]
2) Ishida, M., Arai, S. P., Ohbayashi, N. and Fukuda, M.
The GTPase-deficient Rab27A(Q78L) mutant inhibits melanosome transport in melanocytes through trapping of Rab27A effector protein Slac2-a/melanophilin in their cytosol: Development of a novel melanosome-targeting tag
J. Biol. Chem. 289, 11059-11067 (2014)
[PubMed]
3) Matsui, T., Noguchi, K. and Fukuda, M.
Dennd3 functions as a guanine nucleotide exchange factor for small GTPase Rab12 in mouse embryonic fibroblasts.
J. Biol. Chem. 289, 13986-13995 (2014)
[PubMed]
4) Kobayashi, H., Etoh, K. and Fukuda, M.
Rab35 is translocated from Arf6-positive perinuclear recycling endosomes to neurite tips during neurite outgrowth.
Small GTPases 5, e29290 (2014)
[PubMed]
5) Mori, Y., Fukuda, M. and Henley, J. E.
Small GTPase Rab17 regulates the surface expression of kainate receptors but not α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in hippocampal neurons via dendritic trafficking of Syntaxin-4 protein.
J. Biol. Chem. 289, 20773-20787 (2014)
[PubMed]
6) Kobayashi, H., Etoh, K., Ohbayashi, N. and Fukuda, M.
Rab35 promotes the recruitment of Rab8, Rab13, and Rab36 to recycling endosomes through MICAL-L1 during neurite outgrowth.
Biol. Open 3, 803-814 (2014)
[PubMed]
2013
1) Mori, Y., Matsui, T. and Fukuda, M.
Rabex-5 regulates dendritic localization of Rab17 and neurite morphogenesis in hippocampal neurons.
J. Biol. Chem. 288, 9835-9847 (2013)
[PubMed]
2) 安田貴雄、福田光則:“Slp2-aによるシグナル伝達分子podocalyxinのapical輸送と細胞間相互作用への影響”, 生化学, 85(2), 106-110 (2013) [表紙]
3) Matsui, T. and Fukuda, M.
Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4.
EMBO Rep. 14, 450-457 (2013)
[PubMed]
4) Yatsu, A., Ohbayashi, N., Tamura, K. and Fukuda, M.
Syntaxin-3 is required for melanosomal localization of Tyrp1 in melanocytes.
J. Invest. Dermatol. 133, 2237-2246 (2013)
[PubMed]
5) Kobayashi, H. and Fukuda, M.
Rab35 establishes the EHD1-association site by coordinating two distinct effectors during neurite outgrowth.
J. Cell Sci. 126, 2424-2435 (2013)
[PubMed]
6) Mori, Y., Matsui, T., Omote, D. and Fukuda, M.
Small GTPase Rab39A interacts with UACA and regulates the retinoic acid-induced neurite morphology of Neuro2A cells.
Biochem. Biophys. Res. Commun. 435, 113-119 (2013)
[PubMed]
7) 石田森衛、大林典彦、谷津彩香、福田光則:“メラノソームの形成・成熟・輸送の仕組み”, 顕微鏡, 48(1), 26-32 (2013) [リンク]
8) Kobayashi, H. and Fukuda, M.
Arf6, Rab11, and transferrin receptor define distinct populations of recycling endosomes.
Commun. Integr. Biol. 6, e25036 (2013)
[PubMed]
9) Fukuda, M.
Rab27 effectors, pleiotropic regulators in secretory pathways.
Traffic 14, 949-963 (2013)
[PubMed]
10) 小林穂高、福田光則:“エンドソーム”, 脳科学事典 (2013) [リンク]
11) 大林典彦、福田光則 :“メンブレントラフィックにおける普遍的な制御因子Rabタンパク質”, 領域融合レビュー, 2, e006 (2013) [リンク]
12) Mori, Y. and Fukuda, M.
Rabex-5 determines the neurite localization of its downstream Rab proteins in hippocampal neurons.
Commun. Integr. Biol. 6, e25433 (2013)
[PubMed]
13) 森靖典、福田光則:“シナプトタグミン”, 脳科学事典 (2013) [リンク]
14) Matsui, T. and Fukuda, M.
Methods of analysis of the membrane trafficking pathway from recycling endosomes to lysosomes.
Methods Enzymol. 534, 195-206 (2013)
[PubMed]

2012
1) Ohbayashi, N.*, Maruta, Y.*, Ishida, M. and Fukuda, M.
Melanoregulin regulates retrograde melanosome transport through interaction with the RILP·p150Glued complex in melanocytes.
J. Cell Sci. 125, 1508-1518 (2012)
*, equal contribution
[PubMed]
2) Ohbayashi, N.*, Yatsu, A.*, Tamura, K.* and Fukuda, M.
The Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for dendrite formation in melanocytes.
Mol. Biol. Cell 23, 669-678 (2012)
*, equal contribution
[PubMed]
3) Kobayashi, H. and Fukuda, M.
Rab35 regulates Arf6 activity through centaurin β2/ACAP2 during neurite outgrowth.
J. Cell Sci. 125, 2235-2243 (2012)
[PubMed]
4) Mori, Y., Matsui, T., Furutani, Y., Yoshihara, Y. and Fukuda, M.
Small GTPase Rab17 regulates the dendritic morphogenesis and postsynaptic development of hippocampal neurons.
J. Biol. Chem. 287, 8963-8973 (2012)
[PubMed]
5) Ohbayashi, N. and Fukuda, M.
Role of Rab family GTPases and their effectors in melanosomal logistics.
J. Biochem. 151, 343-351 (2012)
[PubMed]
6) Ishida, M., Ohbayashi, N., Maruta, Y., Ebata, Y. and Fukuda, M.
Functional involvement of Rab1A in microtubule-dependent anterograde melanosome transport in melanocytes.
J. Cell Sci. 125, 5177-5187 (2012)
[PubMed]
7) Ishibashi, K., Uemura, T., Waguri, S. and Fukuda, M.
Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity.
Mol. Biol. Cell 23, 3193-3202 (2012)
[PubMed]
8) Yasuda, T., Saegusa, C., Kamakura, S., Sumimoto, H. and Fukuda, M.
Rab27 effector Slp2-a transports the apical signaling molecule podocalyxin to the apical surface of MDCK II cells and regulates claudin-2 expression.
Mol. Biol. Cell 23, 3229-3239 (2012)
[PubMed]
9) Matsui, T.*, Ohbayashi, N.* and Fukuda, M.
The Rab interacting lysosomal protein (RILP) homology domain functions as a novel effector domain for small GTPase Rab36.
J. Biol. Chem. 287, 28619-28631 (2012)
*, equal contribution
[PubMed]
10) 小林穂高、福田光則:“Rab”, 脳科学事典 (2012) [リンク]
11) 森靖典、福田光則:“小胞輸送”, 脳科学事典 (2012) [リンク]
12) 伊藤敬、福田光則:“オートファゴソーム成熟にかかわる膜輸送メカニズム”, 生体の科学, 63(5), 492-493 (2012)
13) 松井貴英、福田光則:“トランスフェリン受容体の恒常的分解を制御する低分子量GTPase Rab12”, 生体の科学, 63(5), 512-513 (2012)
14) 石田森衛、大林典彦、福田光則:“メラニン色素の輸送システムを制御する新たなタンパク質の発見”, フレグランスジャーナル (FRAGRANCE JOURNAL), 40(11), 16-21 (2012) [リンク]
2011
1) Tamura, K., Ohbayashi, N., Ishibashi, K., and Fukuda, M.
Structure-function analysis of VPS9-ankyrin-repeat protein (Varp) in the trafficking of tyrosinase-related protein 1 in melanocytes.
J. Biol. Chem. 286, 7507-7521 (2011)
[PubMed]
2) Itoh, T., Kanno, E., Uemura, T., Waguri, S., and Fukuda, M.
OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation.
J. Cell Biol. 192, 839-853 (2011)
[PubMed]
3) Mori, Y., and Fukuda, M.
Synaptotagmin IV acts as a multi-functional regulator of Ca2+-dependent exocytosis.
Neurochem. Res. 36, 1222-1227 (2011)
[PubMed]
4) Itoh, T. and Fukuda, M.
A possible role of Atg8 homologs as a scaffold for signal transduction.
Autophagy 7, 1080-1081 (2011)
[PubMed]
5) Matsui, T., Itoh, T., and Fukuda, M.
Small GTPase Rab12 regulates constitutive degradation of transferrin receptor.
Traffic 12, 1432-1443 (2011)
[PubMed]
6) Fukuda, M., Kobayashi, H., Ishibashi, K., and Ohbayashi, N.
Genome-wide investigation of the Rab binding activity of RUN domains: Development of a novel tool that specifically traps GTP-Rab35.
Cell Struct. Funct. 36, 155-170 (2011)
[PubMed]
7) Imai, A., Yoshie, S., Ishibashi, K., Haga-Tsujimura, M., Nashida, T., Shimomura, H. and Fukuda, M.
EPI64 functions as a physiological GTPase-activating protein for Rab27 and regulates amylase release in rat parotid acinar cells.
J. Biol. Chem. 286, 33854-33862 (2011)
[PubMed]
8) Ishibashi, K., Fujita, N., Kanno, E., Omori, H., Yoshimori, T., Itoh, T. and Fukuda, M.
Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12–5-16L2 complex.
Autophagy 7, 1500-1513 (2011)
[PubMed]
9) Matsui, T. and Fukuda, M.
Small GTPase Rab12 regulates transferrin receptor degradation: Implications for a novel membrane trafficking pathway from recycling endosomes to lysosomes.
Cell. Logistics 12, 1432-1443 (2011)
[PubMed]
2010
1) Kanno, E., Ishibashi, K., Kobayashi, H., Matsui, T., Ohbayashi, N.,and Fukuda, M.
Comprehensive Screening for Novel Rab-Binding Proteins by GST Pull-Down Assay Using 60 Different Mammalian Rabs.
Traffic 11, 491-507 (2010)
[PubMed]
2) Ohbayashi, N., Mamishi, S., Ishibashi, K., Maruta, Y., Pourakbari, B., Tamizifar, B., Mohammadpour, M., Fukuda, M., and Parvaneh, N.
Functional characterization of two RAB27A missense mutations found in Griscelli syndrome type 2.
Pigment Cell Melanoma Res. 23, 365-374 (2010)
[PubMed]
3) Sato, M., Mori, Y., Matsui, T., Aoki,R., Oya, M., Yanagihara, Y., Fukuda, M., and Tsuboi, T.
Role of the polybasic sequence in the Doc2α C2B domain in dense-core vesicle exocytosis in PC12 cells.
J. Neurochem. 114, 171-181 (2010)
[PubMed]
2009
1) Ishibashi, K., Kanno, E., Itoh, T., and Fukuda, M.
Identification and characterization of a novel TBC (Tre-2/Bub2/Cdc16) protein that possesses Rab3A-GAP activity.
Genes Cells 14, 41-52 (2009)
[PubMed]
2) Tamura, K., Ohbayashi, N., Maruta, Y., Kanno, E., Itoh, T., and Fukuda, M.
Varp is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes.
Mol Biol Cell 20, 2900-2908 (2009)
[PubMed]
2008
1) Kanno, E. and Fukuda, M.
Increased plasma membrane localization of O-glycosylation-deficient mutant of synaptotagmin I in PC12 cells.
J. Neurosci. Res. 86, 1036-1043 (2008)
[PubMed]
2) Holt, O., Kanno, E., Bossi, G., Booth, S., Daniele, T., Santoro, A., Arico, M., Saegusa, C., Fukuda, M., and Griffiths, G. M.
Slp1 and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse.
Traffic 4, 446-457 (2008)
[PubMed]
3) Fukuda, M., Kanno, E., Ishibashi, K., and Itoh, T.
Large scale screening for novel Rab effectors reveals unexpected broad Rab binding specificity.
Mol. Cell. Proteomics 7, 1031-1042 (2008)
[PubMed]
4) Itoh, T., Fujita, N., Kanno, E., Yamamoto, A., Yoshimori, T., and Fukuda, M.
Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation.
Mol. Biol. Cell 19, 2916-2925 (2008)
[PubMed]
5) Saegusa, C., Kanno, E., Itohara, S., and Fukuda, M.
Expression of Rab27B-binding protein Slp1 in pancreatic acinar cells and its involvement in amylase secretion.
Arch. Biochem. Biophys. 475, 87-92 (2008)
[PubMed]
6) Yu, E., Kanno, E., Choi, S., Sugimori, M., Moreira, J. E., Llinás, R. R., and Fukuda, M.
Role of Rab27 in synaptic transmission at the squid giant synapse.
Proc. Natl. Acad. Sci. U. S. A.105, 16003-16008 (2008)
[PubMed]
7) Kukimoto-Niino, M., Sakamoto, A., Kanno, E., Hanawa-Suetsugu, K., Terada, T., Shirouzu, M., Fukuda, M., and Yokoyama, S.
Structural basis for the exclusive specificity of Slac2-a/melanophilin for the Rab27 GTPases.
Structure 16, 1478-1490 (2008)
[PubMed]


福田教授の全研究成果はこちら
Copyright(c)2008 福田研 All rights reserved.