|
2025 | ||
1) | Haga, K. and Fukuda, M. Comprehensive knockout analysis of the RAB family small GTPases reveals an overlapping role of RAB2 and RAB14 in autophagosome maturation. Autophagy 21, 21–36 (2025) |
[PubMed] |
2) | Hata, R., Sugawara, A. and Fukuda, M. Rab10 function in tubular endosome formation requires the N-terminal K3 residue and is disrupted by N-terminal tagging. J. Cell Sci. 138, jcs.263649 (2025) |
[PubMed] |
3) | 菅原翠、福田光則 “メラノソームの色素細胞内輸送と表皮内移送” Cosmetic Science「美白・しみ予防研究のトレンド」 4 60-67 (2025) |
[リンク] |
4) | Nakashima S. and Fukuda M. Identification of Rab GTPase-activating proteins required for tubular endosome formation. Traffic 26 e70007 (2025) |
[PubMed] |
5) | Sugawara A. Maruta Y. and Fukuda M. AID-2×RBD27 an auxin-inducible degron-based Rab27 trapper that reversibly inhibits the function of Rab27A in melanocytes. J. Cell Sci. 138, jcs.263878 (2025) |
[PubMed] |
2024 | ||
1) | Nakamura, H. and Fukuda, M. Establishment of a synchronized tyrosinase transport system revealed a role of Tyrp1 in efficient melanogenesis by promoting tyrosinase targeting to melanosomes. Sci. Rep. 14,2529 (2024) |
[PubMed] |
2) | Komori, T. and Fukuda, M. Two roads diverged in a cell: insights from differential exosome regulation in polarized cells. Front. Cell Dev. Biol. 12, 1451988 |
[PubMed] |
2023 | ||
1) | Maruta, Y. and Fukuda, M. Lysosome-related organelles. Encyclopedia of Cell Biology 2nd edition volume 2, pp. 281-290, Elsevier, Amsterdam, Netherlands (2023) |
[リンク] |
2) | 中村光李、福田光則:“メラノソームの生合成”:, Derma「色素異常症診療のポイント」(鈴木民夫編)」, 330, 9-18 (2023) |
[リンク] |
3) | Nakashima, S., Matsui, T. and Fukuda, M. Vps9d1 regulates tubular endosome formation through specific activation of Rab22A. J. Cell Sci. 136, jcs260522 (2023) |
[PubMed] |
4) | Brauer, N., Maruta, Y., Strege, K., Oschlies, I., Nakamura, H., Lisci, M., Böhm, S., Lehmberg, K., Brandhoff, L., Hennies, H. C., Ehl, S. R. Parvaneh, N., Kappler, W., Fukuda, M., Griffiths, G. M., Niehues, T. and Ammann, S. K. Immunodeficiency with susceptibility to lymphoma with complex genotype affecting energy metabolism (FBP1, ACAD9) and vesicle trafficking (RAB27A). Front. Immunol. 14, 1151166 (2023) |
[PubMed] |
5) | Komori, T., Kuwahara, T., Fujimoto, T., Sakurai, M., Koyama-Honda, I., Fukuda, M. and Iwatsubo, T. Novel phosphorylation of Rab29 that regulates its localization and lysosomal stress response in concert with LRRK2. J. Cell Sci. 136, jcs.261003 (2023) |
[PubMed] |
6) | Matsui T. Sakamaki Y. Hiragi S. and Fukuda M. VAMP5 and distinct sets of cognate Q-SNAREs mediate exosome release. Cell Struct. Funct.48, 187–198 (2023) |
[PubMed] |
7) | Rios, J. J., Li, Y., Paria, N., Bohlender, R. J., Huff, C., Rosenfeld, J. A., Liu, P., Bi, W., Haga, K., Fukuda, M., Vashisth, S., Kaur, K., Chahrour, M., Bober, M. B., Duker, A. L., Ladha, F. A., Hanchard, N. A., Atala, K., Khanshour, A. M., Smith, L., Wise, C. A. and Delgado, M. R. RAB1A haploinsufficiency phenocopies the 2p14-p15 microdeletion and is associated with impaired neuronal differentiation. Am. J. Hum. Genet. 110, 2103-2111 (2023) |
[PubMed] |
2022 | ||
1) | Oguchi, M. E., Homma, Y. and Fukuda, M. The N-terminal Leu-Pro-Gln sequence of Rab34 is required for ciliogenesis in hTERT-RPE1 cells. Small GTPases 16, 1-7 (2022) |
[PubMed] |
2) | Matsui, T., Sakamaki, Y., Nakashima, S. and Fukuda, M. Rab39 and its effector UACA regulate basolateral exosome release from polarized epithelial cells. Cell Rep. 39, 110875 (2022) |
[PubMed] |
3) | Naß, J., Koerdt, S. N., Biesemann, A., Chehab, T., Yasuda, T., Fukuda, M., Martín-Belmonte, F. and Gerke, V. Tip-end fusion of a rod-shaped secretory organelle. Cell. Mol. Life Sci. 79, 344 (2022) |
[PubMed] |
4) | Hiragi, S., Matsui, T., Sakamaki, Y. and Fukuda, M. TBC1D18 is a Rab5-GAP that coordinates endosome maturation together with Mon1. J. Cell Biol. 221, e202201114 (2022) |
[PubMed] |
5) | Maruta, Y. and Fukuda, M. Large Rab GTPase Rab44 regulates microtubule-dependent retrograde melanosome transport in melanocytes. J. Biol. Chem. 298, 102508 (2022) |
[PubMed] |
6) | Nishizawa, A., Maruta, Y. and Fukuda, M. Rab32/38-dependent and -independent transport of tyrosinase to melanosomes in B16-F1 melanoma cells. Int. J. Mol. Sci. 23, 14144 (2022) |
[PubMed] |
7) | 丸田優人、吉川智香子、水谷友紀、福田光則:“ヒト皮膚組織内のメラニン色素の可視化”:, Cosmetic Stage, 17(1), 7-11 (2022) |
[リンク] |
2021 | ||
1) | Homma, Y. Hiragi, S. and Fukuda, M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 288, 36-55 (2021) |
[PubMed] |
2) | Fukuda, M. Rab GTPases: key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res. 34, 222-235 (2021) |
[PubMed] |
3) | Urrutia, P. J., Bodaleo, F., Bórquez, D. A., Homma, Y., Rozes-Salvador, V., Villablanca, C., Conde, C., Fukuda, M. and González-Billault, C. Tuba activates Cdc42 during neuronal polarization downstream of the small GTPase Rab8a. J. Neurosci. 41, 1636-1649 (2021) |
[PubMed] |
4) | Osaki, F., Matsui, T., Hiragi, S., Homma, Y. and Fukuda, M. RBD11, a bioengineered Rab11-binding module for visualizing and analyzing endogenous Rab11. J. Cell Sci. 134, jcs.257311 (2021) |
[PubMed] |
5) | Matsui, T., Osaki, F., Hiragi, S., Sakamaki, Y. and Fukuda, M. ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep. 22, e51475 (2021) |
[PubMed] |
6) | Homma, Y. and Fukuda, M. Knockout analysis of Rab6 effector proteins revealed the role of VPS52 in the secretory pathway. Biochem. Biphys. Res. Common. 561, 151-157 (2021) |
[PubMed] |
7) | Omar, J., Rosenbaum, E., Efergan, A., Abu Sneineh, B., Yeheskel, A., Maruta, Y. Fukuda, M. and Sagi-Eisenberg, R. Biochemical and structural insights into Rab12 interactions with RILP and its family members. Sci. Rep. 11, 10317 (2021) |
[PubMed] |
8) | Ganga, A. K., Kennedy, M. C., Oguchi, M. E., Gray, S. D., Oliver, K. E., Knight, T. A., De La Cruz, E. M., Homma, Y., Fukuda, M. and Breslow, D. K. Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway. Curr. Biol. 31, 2895-2905 (2021) |
[PubMed] |
9) | Kinoshita, R., Homma, Y. and Fukuda, M. Methods for establishing Rab knockout MDCK cells. Methods Mol. Biol. 2293, 243-256 (2021) |
[PubMed] |
10) | Trofimenko, E., Homma, Y., Fukuda M. and Widmann, C. The endocytic pathway taken by cationic substances requires Rab14 but not Rab5 and Rab7. Cell Rep. 37, 109945 (2021) |
[PubMed] |
11) | Hiragi, S., Matsui, T., Sakamaki, Y. and Fukuda, M. TBC1D18, a novel Rab5-GAP, coordinates endosome maturation together with Mon1. BioRxiv 468194v1 (2021) |
[リンク] | 12) | Hatoyama, Y., Homma, Y., Hiragi, S. and Fukuda, M. Establishment and analysis of conditional Rab1 and Rab5 knockout cells by using the auxin-inducible degron system. J. Cell Sci. 134, jcs.259184 (2021) |
[PubMed] |
2020 | ||
1) | Kinoshita, R., Homma, Y. and Fukuda, M. Rab35–GEFs, DENND1A and folliculin differentially regulate podocalyxin trafficking in two- and three-dimensional epithelial cell cultures. J. Biol. Chem. 295, 3652-3663 (2020) |
[PubMed] |
2) | 松井貴英、福田光則:“エクソソームの生合成機構”, 医学のあゆみ「エクソソームと疾患医学」, 272(4), 293-298 (2020) |
[リンク] |
3) | Marubashi,S. and Fukuda, M. Rab7B/42 is functionally involved in protein degradation on melanosomes in keratinocytes. Cell Struct. Funct. 45, 45-55 (2020) |
[PubMed] |
4) | Ohbayashi, N. and Fukuda, M. Recent advances in understanding the molecular basis of melanogenesis in melanocytes. F1000 Res. 9, 608 (2020) |
[PubMed] |
5) | 本間悠太、福田光則:“ノックアウト解析により加速する低分子量Gタンパク質Rabの生理機能の解明”, 生化学, 92(3), 447-452 (2020) |
[リンク] |
6) | Oguchi, M. E., Okuyama, K., Homma, Y. and Fukuda, M. A comprehensive analysis of Rab GTPases reveals a role for Rab34 in serum-starvation-induced primary ciliogenesis. J. Biol. Chem. 295, 12674-12685 (2020) |
[PubMed] |
7) | Murakawa, T., Kiger, A. A., Sakamaki, Y., Fukuda, M. and Fujita, N. An autophagy-dependent tubular lysosomal network synchronizes degradative activity required for muscle remodeling. J. Cell Sci. 133, jcs248336 (2020) |
[PubMed] |
8) | Ohishi, Y., Ammann, S. K., Ziaee, V., Strege, K., Groß, M., Amos, C. V., Shahrooei, M., Ashournia, P., Razaghian, An., Griffiths, G. M., Ehl, S. R., Fukuda, M. and Parvaneh, N. Griscelli syndrome type 2 sine albinism: unraveling differential RAB27A effector engagement. Front. Immunol. 11,612977 (2020) |
[PubMed] |
9) | Yoshikawa-Murakami, C., Mizutani, Y., Ryu, A., Naru, E., Teramura, T., Homma, Y. and Fukuda, M. A novel method for visualizing melanosome and melanin distribution in human skin tissues. Int. J. Mol. Sci. 21, E8514 (2020) |
[PubMed] |
2019 | ||
1) | Etoh, K. and Fukuda, M. Rab10 regulates tubular endosome formation through KIF13A/B motors. J. Cell Sci. 132, jcs226977 (2019) |
[PubMed] |
2) | Ohishi, Y., Kinoshita, R., Marubashi, S., Ishida, M. and Fukuda, M. The BLOC-3 subunit HPS4 is required for activation of Rab32/38 GTPases in melanogenesis, but its Rab9 activity is dispensable for melanogenesis. J. Biol. Chem. 294, 6912-6922 (2019) |
[PubMed] |
3) | Homma, Y., Kinoshita, R., Kuchitsu, Y., Wawro, P. S., Marubashi, S., Oguchi, M. E., Ishida, M., Fujita, N. and Fukuda, M. Comprehensive knockout analysis of the Rab family GTPases in epithelial cells. J. Cell. Biol. 218, 2035-2050 (2019) |
[PubMed] |
2018 | ||
1) | Oguchi, M. E., Etoh, K. and Fukuda, M. Rab20, a novel Rab small GTPase that negatively regulates neurite outgrowth of PC12 cells. Neurosci. Lett. 662, 324-330 (2018) |
[PubMed] |
2) | Oguchi, M. E. and Fukuda, M. Rab27 Encyclopedia of Signaling Molecules 2nd Edition (Choi, S. ed.) pp. 4378-4385, Springer, Berlin Heidelberg, Germany (2018) |
[リンク] |
3) | Kuchitsu, Y., Homma, Y., Fujita, N. and Fukuda, M. Rab7 knockout unveiled regulated autolysosome maturation induced by glutamine starvation. J. Cell Sci. 131, jcs215442 (2018) |
[PubMed] |
4) | Ohbayashi, N. and Fukuda, M. SNARE dynamics during melanosome maturation. Biochem. Soc. Trans. 46, 911-917 (2018) |
[PubMed] |
5) | 大林典彦、福田光則:“メラノサイトにおけるメラノソーム輸送”, 最新・化粧品開発のための美容理論、処方/製剤、機能評価の実際,(技術教育出版社)第8章, 71-81 (2018) | |
6) | Kuchitsu, Y. and Fukuda, M. Revisiting Rab7 functions in mammalian autophagy: Rab7 knockout studies Cells, 7, 215 (2018) |
[PubMed] |
2017 | ||
1) | Itoh, T. and Fukuda, M. Roles of Rab-GAPs in regulating autophagy. Autophagy: Cancer, other pathologies, inflammation, immunity, infection, and aging 11, 143-157 (2017) |
[Link] |
2) | Fujita, N., Huang, W., Lin, T.-H., Groulx, J.-F., Jean, S., Kuchitsu, Y., Koyama-Honda, I., Mizushima, N., Fukuda, M. and Kiger, A. A. Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy. eLife, 6, e23367 (2017) |
[PubMed] |
3) | Ishida, M., Marubashi, S. and Fukuda, M. M-INK, a novel tool for visualizing melanosomes and melanocores. J. Biochem. 161, 323-326 (2017) |
[PubMed] |
4) | Oguchi, M. E., Noguchi, K. and Fukuda, M. TBC1D12 is a novel Rab11-binding protein that modulates neurite outgrowth of PC12 cells. PLoS One, 12, e0174883 (2017) |
[PubMed] |
5) | 本間悠太、福田光則:“Rab ファミリー低分子量 G タンパク質による上皮極性輸送のメカニズム”, 生化学, 89(2), 255-258 (2017) | [リンク] |
6) | 石田森衛、大石雄太、福田光則:“メラニン色素を認識する新規ツール“M-INK“の開発”, フレグランスジャーナル (FRAGRANCE JOURNAL), 45(9), 21-26 (2017) | |
7) | 朽津芳彦、藤田尚信、福田光則:“Rabによるオートファジー制御”, 実験医学増刊号「The オートファジー」, 35(15), 58-65 (2017) | |
8) | 大石雄太、福田光則:“メラニン色素の輸送レベルでの制御と美白剤開発”, Cosmetic Stage, 12(1), 7-14 (2017) |
2016 | ||
1) | Hirano, S., Uemura, T., Annoh, H., Fujita, N., Waguri, S., Itoh, T. and Fukuda, M. Differing susceptibility to autophagic degradation activity of two LC3-binding proteins: SQSTM1/p62 and TBC1D25/OATL1. Autophagy 12, 312-326 (2016) |
[PubMed] |
2) | Marubashi, S., Shimada, H., Fukuda, M. and Ohbayashi, N. RUTBC1 functions as a GTPase-activating protein for Rab32/38 and regulates melanogenic enzyme trafficking in melanocytes. J. Biol. Chem. 291, 1427-1440 (2016) |
[PubMed] |
3) | Mrozowska, P. S. and Fukuda, M. Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures. J. Cell Biol. 213, 355-369 (2016) |
[PubMed] |
4) | Marubashi, S., Ohbayashi, N. and Fukuda, M. A Varp-binding protein, RACK1, regulates dendrite outgrowth through stabilization of Varp protein in mouse melanocytes. J. Invest. Dermatol. 136, 1672-1680 (2016) |
[PubMed] |
5) | Fukuda, M. Multiple roles of VARP in endosomal trafficking: Rabs, retromer components, and R-SNARE VAMP7 meet on VARP. Traffic, 17, 709-719 (2016) |
[PubMed] |
6) | Homma, Y. and Fukuda, M. Rabin8 regulates neurite outgrowth in both a GEF-activity-dependent and -independent manner. Mol. Biol. Cell. 27, 2107-2118 (2016) |
[PubMed] |
7) | Ishida, M., Oguchi, M. E., and Fukuda, M. Multiple types of guanine nucleotide exchange factors (GEFs) for Rab small GTPases. Cell Struct. Funct. 41, 61-79 (2016) |
[PubMed] |
8) | 本間悠太、福田光則:“Rabファミリーによるメンブレントラフィック制御”, Dojin Bioscience Series 24 「メンブレンラフィック」(福田光則、吉森保編), 120-132 (2016) | [リンク] |
9) | Mrozowska, P. S. and Fukuda, M. Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells. Small GTPases 7, 231-238 (2016) |
[PubMed] |
2015 | ||
1) | Yatsu, A., Shimada, H., Ohbayashi, N. and Fukuda, M. Rab40C is a novel Varp-binding protein that promotes proteasomal degradation of Varp in melanocytes. Biol. Open, 4, 267-275 (2015) |
[PubMed] |
2) | Ishida, M., Ohbayashi, N. and Fukuda, M. Rab1A regulates anterograde melanosome transport by recruiting kinesin-1 to melanosomes through interaction with SKIP. Sci. Rep. 5, 8238 (2015) |
[PubMed] |
3) | Etoh, K. and Fukuda, M. Structure-function analyses of the small GTPase Rab35 and its efffector protein centaurin-β2/ACAP2 during neurite outgrowth of PC12 cells. J. Biol. Chem. 290, 9064-9074 (2015) |
[PubMed] |
4) | Yasuda, T., Homma, Y. and Fukuda, M. Slp2-a inactivates ezrin by recruiting protein phosphatase 1 to the plasma membrane. Biochem. Biophys. Res. Commun. 460, 896-902 (2015) |
[PubMed] |
5) | Aizawa, M. and Fukuda, M. Small GTPase Rab2B and its specific binding protein Golgi-associated Rab2B interactor-like 4 (GARI-L4) regulate Golgi morphology. J. Biol. Chem. 290, 22250-22261 (2015) |
[PubMed] |
6) | 石田森衛、大林典彦、福田光則:“メラノソーム形成とケラチノサイトへの輸送”, 色素細胞第2版,(慶応義塾大学出版会), 第5章, 48(1), 44-58 (2015) | |
7) | 衛藤貫、福田光則:“エンドソーム”, 生体の科学, 66(5), 486-487 (2015) |
2014 | ||
1) | Yasuda, T. and Fukuda, M. Slp2-a controls renal epithelial cell size through regulation of Rap–ezrin signaling independently of Rab27. J. Cell Sci. 127, 557-570 (2014) |
[PubMed] |
2) | Ishida, M., Arai, S. P., Ohbayashi, N. and Fukuda, M. The GTPase-deficient Rab27A(Q78L) mutant inhibits melanosome transport in melanocytes through trapping of Rab27A effector protein Slac2-a/melanophilin in their cytosol: Development of a novel melanosome-targeting tag J. Biol. Chem. 289, 11059-11067 (2014) |
[PubMed] |
3) | Matsui, T., Noguchi, K. and Fukuda, M. Dennd3 functions as a guanine nucleotide exchange factor for small GTPase Rab12 in mouse embryonic fibroblasts. J. Biol. Chem. 289, 13986-13995 (2014) |
[PubMed] |
4) | Kobayashi, H., Etoh, K. and Fukuda, M. Rab35 is translocated from Arf6-positive perinuclear recycling endosomes to neurite tips during neurite outgrowth. Small GTPases 5, e29290 (2014) |
[PubMed] |
5) | Mori, Y., Fukuda, M. and Henley, J. E. Small GTPase Rab17 regulates the surface expression of kainate receptors but not α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in hippocampal neurons via dendritic trafficking of Syntaxin-4 protein. J. Biol. Chem. 289, 20773-20787 (2014) |
[PubMed] |
6) | Kobayashi, H., Etoh, K., Ohbayashi, N. and Fukuda, M. Rab35 promotes the recruitment of Rab8, Rab13, and Rab36 to recycling endosomes through MICAL-L1 during neurite outgrowth. Biol. Open 3, 803-814 (2014) |
[PubMed] |
2013 | ||
1) | Mori, Y., Matsui, T. and Fukuda, M. Rabex-5 regulates dendritic localization of Rab17 and neurite morphogenesis in hippocampal neurons. J. Biol. Chem. 288, 9835-9847 (2013) |
[PubMed] |
2) | 安田貴雄、福田光則:“Slp2-aによるシグナル伝達分子podocalyxinのapical輸送と細胞間相互作用への影響”, 生化学, 85(2), 106-110 (2013) | [表紙] |
3) | Matsui, T. and Fukuda, M. Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4. EMBO Rep. 14, 450-457 (2013) |
[PubMed] |
4) | Yatsu, A., Ohbayashi, N., Tamura, K. and Fukuda, M. Syntaxin-3 is required for melanosomal localization of Tyrp1 in melanocytes. J. Invest. Dermatol. 133, 2237-2246 (2013) |
[PubMed] |
5) | Kobayashi, H. and Fukuda, M. Rab35 establishes the EHD1-association site by coordinating two distinct effectors during neurite outgrowth. J. Cell Sci. 126, 2424-2435 (2013) |
[PubMed] |
6) | Mori, Y., Matsui, T., Omote, D. and Fukuda, M. Small GTPase Rab39A interacts with UACA and regulates the retinoic acid-induced neurite morphology of Neuro2A cells. Biochem. Biophys. Res. Commun. 435, 113-119 (2013) |
[PubMed] |
7) | 石田森衛、大林典彦、谷津彩香、福田光則:“メラノソームの形成・成熟・輸送の仕組み”, 顕微鏡, 48(1), 26-32 (2013) | [リンク] |
8) | Kobayashi, H. and Fukuda, M. Arf6, Rab11, and transferrin receptor define distinct populations of recycling endosomes. Commun. Integr. Biol. 6, e25036 (2013) |
[PubMed] |
9) | Fukuda, M. Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 14, 949-963 (2013) |
[PubMed] |
10) | 小林穂高、福田光則:“エンドソーム”, 脳科学事典 (2013) | [リンク] |
11) | 大林典彦、福田光則 :“メンブレントラフィックにおける普遍的な制御因子Rabタンパク質”, 領域融合レビュー, 2, e006 (2013) | [リンク] |
12) | Mori, Y. and Fukuda, M. Rabex-5 determines the neurite localization of its downstream Rab proteins in hippocampal neurons. Commun. Integr. Biol. 6, e25433 (2013) |
[PubMed] |
13) | 森靖典、福田光則:“シナプトタグミン”, 脳科学事典 (2013) | [リンク] |
14) | Matsui, T. and Fukuda, M. Methods of analysis of the membrane trafficking pathway from recycling endosomes to lysosomes. Methods Enzymol. 534, 195-206 (2013) |
[PubMed] |
2012 | ||
1) | Ohbayashi, N.*, Maruta, Y.*, Ishida, M. and Fukuda, M. Melanoregulin regulates retrograde melanosome transport through interaction with the RILP·p150Glued complex in melanocytes. J. Cell Sci. 125, 1508-1518 (2012) *, equal contribution |
[PubMed] |
2) | Ohbayashi, N.*, Yatsu, A.*, Tamura, K.* and Fukuda, M. The Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for dendrite formation in melanocytes. Mol. Biol. Cell 23, 669-678 (2012) *, equal contribution |
[PubMed] |
3) | Kobayashi, H. and Fukuda, M. Rab35 regulates Arf6 activity through centaurin β2/ACAP2 during neurite outgrowth. J. Cell Sci. 125, 2235-2243 (2012) |
[PubMed] |
4) | Mori, Y., Matsui, T., Furutani, Y., Yoshihara, Y. and Fukuda, M. Small GTPase Rab17 regulates the dendritic morphogenesis and postsynaptic development of hippocampal neurons. J. Biol. Chem. 287, 8963-8973 (2012) |
[PubMed] |
5) | Ohbayashi, N. and Fukuda, M. Role of Rab family GTPases and their effectors in melanosomal logistics. J. Biochem. 151, 343-351 (2012) |
[PubMed] |
6) | Ishida, M., Ohbayashi, N., Maruta, Y., Ebata, Y. and Fukuda, M. Functional involvement of Rab1A in microtubule-dependent anterograde melanosome transport in melanocytes. J. Cell Sci. 125, 5177-5187 (2012) |
[PubMed] |
7) | Ishibashi, K., Uemura, T., Waguri, S. and Fukuda, M. Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity. Mol. Biol. Cell 23, 3193-3202 (2012) |
[PubMed] |
8) | Yasuda, T., Saegusa, C., Kamakura, S., Sumimoto, H. and Fukuda, M. Rab27 effector Slp2-a transports the apical signaling molecule podocalyxin to the apical surface of MDCK II cells and regulates claudin-2 expression. Mol. Biol. Cell 23, 3229-3239 (2012) |
[PubMed] |
9) | Matsui, T.*, Ohbayashi, N.* and Fukuda, M. The Rab interacting lysosomal protein (RILP) homology domain functions as a novel effector domain for small GTPase Rab36. J. Biol. Chem. 287, 28619-28631 (2012) *, equal contribution |
[PubMed] |
10) | 小林穂高、福田光則:“Rab”, 脳科学事典 (2012) | [リンク] |
11) | 森靖典、福田光則:“小胞輸送”, 脳科学事典 (2012) | [リンク] |
12) | 伊藤敬、福田光則:“オートファゴソーム成熟にかかわる膜輸送メカニズム”, 生体の科学, 63(5), 492-493 (2012) | |
13) | 松井貴英、福田光則:“トランスフェリン受容体の恒常的分解を制御する低分子量GTPase Rab12”, 生体の科学, 63(5), 512-513 (2012) | |
14) | 石田森衛、大林典彦、福田光則:“メラニン色素の輸送システムを制御する新たなタンパク質の発見”, フレグランスジャーナル (FRAGRANCE JOURNAL), 40(11), 16-21 (2012) | [リンク] |
2011 | ||
1) | Tamura, K., Ohbayashi, N., Ishibashi, K., and Fukuda, M. Structure-function analysis of VPS9-ankyrin-repeat protein (Varp) in the trafficking of tyrosinase-related protein 1 in melanocytes. J. Biol. Chem. 286, 7507-7521 (2011) |
[PubMed] | 2) | Itoh, T., Kanno, E., Uemura, T., Waguri, S., and Fukuda, M. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J. Cell Biol. 192, 839-853 (2011) |
[PubMed] |
3) | Mori, Y., and Fukuda, M. Synaptotagmin IV acts as a multi-functional regulator of Ca2+-dependent exocytosis. Neurochem. Res. 36, 1222-1227 (2011) |
[PubMed] |
4) | Itoh, T. and Fukuda, M. A possible role of Atg8 homologs as a scaffold for signal transduction. Autophagy 7, 1080-1081 (2011) |
[PubMed] |
5) | Matsui, T., Itoh, T., and Fukuda, M. Small GTPase Rab12 regulates constitutive degradation of transferrin receptor. Traffic 12, 1432-1443 (2011) |
[PubMed] |
6) | Fukuda, M., Kobayashi, H., Ishibashi, K., and Ohbayashi, N. Genome-wide investigation of the Rab binding activity of RUN domains: Development of a novel tool that specifically traps GTP-Rab35. Cell Struct. Funct. 36, 155-170 (2011) |
[PubMed] |
7) | Imai, A., Yoshie, S., Ishibashi, K., Haga-Tsujimura, M., Nashida, T., Shimomura, H. and Fukuda, M. EPI64 functions as a physiological GTPase-activating protein for Rab27 and regulates amylase release in rat parotid acinar cells. J. Biol. Chem. 286, 33854-33862 (2011) |
[PubMed] |
8) | Ishibashi, K., Fujita, N., Kanno, E., Omori, H., Yoshimori, T., Itoh, T. and Fukuda, M. Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12–5-16L2 complex. Autophagy 7, 1500-1513 (2011) |
[PubMed] |
9) | Matsui, T. and Fukuda, M. Small GTPase Rab12 regulates transferrin receptor degradation: Implications for a novel membrane trafficking pathway from recycling endosomes to lysosomes. Cell. Logistics 12, 1432-1443 (2011) |
[PubMed] |
2010 | ||
1) | Kanno, E., Ishibashi, K., Kobayashi, H., Matsui, T., Ohbayashi, N.,and Fukuda, M. Comprehensive Screening for Novel Rab-Binding Proteins by GST Pull-Down Assay Using 60 Different Mammalian Rabs. Traffic 11, 491-507 (2010) |
[PubMed] |
2) | Ohbayashi, N., Mamishi, S., Ishibashi, K., Maruta, Y., Pourakbari, B., Tamizifar, B., Mohammadpour, M., Fukuda, M., and Parvaneh, N. Functional characterization of two RAB27A missense mutations found in Griscelli syndrome type 2. Pigment Cell Melanoma Res. 23, 365-374 (2010) |
[PubMed] |
3) | Sato, M., Mori, Y., Matsui, T., Aoki,R., Oya, M., Yanagihara, Y., Fukuda, M., and Tsuboi, T. Role of the polybasic sequence in the Doc2α C2B domain in dense-core vesicle exocytosis in PC12 cells. J. Neurochem. 114, 171-181 (2010) |
[PubMed] |
2009 | ||
1) | Ishibashi, K., Kanno, E., Itoh, T., and Fukuda, M. Identification and characterization of a novel TBC (Tre-2/Bub2/Cdc16) protein that possesses Rab3A-GAP activity. Genes Cells 14, 41-52 (2009) |
[PubMed] |
2) | Tamura, K., Ohbayashi, N., Maruta, Y., Kanno, E., Itoh, T., and Fukuda, M. Varp is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes. Mol Biol Cell 20, 2900-2908 (2009) |
[PubMed] |
2008 | ||
1) | Kanno, E. and Fukuda, M. Increased plasma membrane localization of O-glycosylation-deficient mutant of synaptotagmin I in PC12 cells. J. Neurosci. Res. 86, 1036-1043 (2008) |
[PubMed] |
2) | Holt, O., Kanno, E., Bossi, G., Booth, S., Daniele, T., Santoro, A., Arico, M., Saegusa, C., Fukuda, M., and Griffiths, G. M. Slp1 and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse. Traffic 4, 446-457 (2008) |
[PubMed] |
3) | Fukuda, M., Kanno, E., Ishibashi, K., and Itoh, T. Large scale screening for novel Rab effectors reveals unexpected broad Rab binding specificity. Mol. Cell. Proteomics 7, 1031-1042 (2008) |
[PubMed] |
4) | Itoh, T., Fujita, N., Kanno, E., Yamamoto, A., Yoshimori, T., and Fukuda, M. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell 19, 2916-2925 (2008) |
[PubMed] |
5) | Saegusa, C., Kanno, E., Itohara, S., and Fukuda, M. Expression of Rab27B-binding protein Slp1 in pancreatic acinar cells and its involvement in amylase secretion. Arch. Biochem. Biophys. 475, 87-92 (2008) |
[PubMed] |
6) | Yu, E., Kanno, E., Choi, S., Sugimori, M., Moreira, J. E., Llinás, R. R., and Fukuda, M. Role of Rab27 in synaptic transmission at the squid giant synapse. Proc. Natl. Acad. Sci. U. S. A.105, 16003-16008 (2008) |
[PubMed] |
7) | Kukimoto-Niino, M., Sakamoto, A., Kanno, E., Hanawa-Suetsugu, K., Terada, T., Shirouzu, M., Fukuda, M., and Yokoyama, S. Structural basis for the exclusive specificity of Slac2-a/melanophilin for the Rab27 GTPases. Structure 16, 1478-1490 (2008) |
[PubMed] |
Copyright(c)2008 福田研 All rights reserved. |